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Crystallization of proteins accompanied by formation of a cylindrical surface

A. A. Boulbitch
Fakultät für Physik, Technische Universita¨t München, Physik-Department E-22, D-85748 Garching bei Mu¨nchen, Germany
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A possibility of the formation a self-contained cylindrical lattice under crystallization of proteins due to the
anisotropic~trapezoidal! shape of their globules is discussed theoretically. The theory of cylindrical crystalli-
zation is considered. It is shown that in this case the list of the low-symmetry phases is completely determined
by the symmetry of the cylindrical liquid, which is predetermined by the molecular shape. The phase symme-
tries and structures are found out. The phase diagrams are obtained.@S1063-651X~97!08208-1#

PACS number~s!: 87.10.1e, 64.70.Dv, 87.22.Bt, 46.30.2i
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In biological objects there is a set of examples of unus
structures arising under crystallization of certain protei
Rather than crystallize into a bulk three-dimensional~3D!
lattice, as usually occurs for all nonorganic and for m
organic materials, these proteins form a self-contained cy
drical surface.

The most important example is microtubule formation u
der crystallization of the protein tubulin. This protein form
microtubules—long cylinders about 25 nm in outer diame
and 14–15 nm in inner diameter. They are constructed
tubulin dimers and have crystalline organization. Tubu
dimers align head to tail in 13 longitudinal parallel protofil
ments, lining the wall of the microtubule. Each tubulin su
unit is a polar dimer consisting of two slightly different tu
bulin a andb monomers, its polar character originating fro
calcium ions bounded withinb monomers@1,2#.

The proteins of the tobacco mosaic virus aggregate in
cylinder with an inner radius of about 200 nm and an ou
one of about 800 nm and with a length of more than 30 0
nm with the RNA molecule lying along the helix. There is
region on the phase diagram in which the protein subu
are arranged in a helix@1#.

Under crystallization of proteins of biological membran
formation of crystal patches is usually observed. Being m
rigid, the protein crystal area is as a rule flattened with
spect to the protein-free membrane region. However, in
tain cases crystallization of proteins on initially spheric
vesicles was followed by the transformation of vesicle sh
into cylindrical shape, the vesicle surface being covered b
self-contained crystalline protein lattice@3#.

In biological systems one can find already existing obje
with cylindrically arranged proteins. In cylindrical giant cel
of green water plantsChara and Nitella the actin filaments
form a helical winding under the cell membrane, providing
helical stream of the cytoplasm@4#.

The above examples stimulate interest in elucidating
reasons that proteins crystallize into a lattice, forming
closed cylindrical surface.

Crystallization of organic molecules and especially
proteins is often determined by gently sloping potentia
which enables us to apply in this case the theory of w
crystallization@5#. Crystallization should be considered we
if the transition from a liquid to a crystal is of the first orde
but is rather close to the second order. In the case of
crystallization and 2D crystallization on a plane this impos
561063-651X/97/56~3!/3395~6!/$10.00
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the rigid restriction that either it takes place in close vicin
to the isolated Curie point of the phase diagram or the cu
term is small for some reason@6#. It is shown in this paper
that this limitation is absent under crystallization with th
formation of the cylindrical surface.

Consider first a simple example of an aggregation of m
ecules whose shape in one of the three mutually perpend
lar cross sections is trapezoidal and in the other two i
rectangular. Assume that under the aggregation the nea
molecules are oriented in the same way. These molec
form obviously an archlike surface with its radius fixed b
the size of the trapezoid. On the one hand, in order to for
closed single-layer cylindrical surface the size of the m
ecules must be subject to certain geometrical conditio
However, if the molecules are elastic they can still form
cylindrical surface at any size of the trapezoid. On the ot
hand, formation of a multilayer cylindrical surface requir
that some additional conditions on the subunits size be
filled, the elastic energy cost increasing with the number
layers under elastic adaptation. Hence the formation o
monolayer cylinder should be energetically favorable
some cases.

One can expect the globules of some proteins to h
anisotropic shapes qualitatively corresponding to that d
cussed above@7#. The condition of the same orientation o
proteins under aggregation can be realized for vari
reasons—because of either the orientational peculiaritie
their interaction potentials or some geometric restrictio
The latter occurs, for example, under crystallization of p
teins anchored onto one of the membrane sides@3#.

When the anisotropy of protein globules is of the ty
discussed above one should expect a cylindrical surface t
formed under protein crystallization. The free energy d
scribing this kind of crystallization involves the terms relat
to the protein conformational changes, elastic deformat
and, in the case of membrane proteins, to the membr
shape change in addition to terms describing the crystall
tion itself. The latter ones contain information about equil
rium structures of possible phases and topology of the ph
diagram.

It is the equilibrium phase structures and topology of t
phase diagram that are studied in the present communica
Suppose that the cylindrical surface of a necessary ra
containing proteins in the liquid phase already exists~i.e.,
there is already a cylindrical vesicle with integrated or a
3395 © 1997 The American Physical Society
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3396 56A. A. BOULBITCH
chored proteins in a liquid phase!. In this case the crystalli-
zation of the protein liquid on this cylindrical surface w
take place in its pure form without any consumption of e
ergy for conformational or elastic changes. The structu
and symmetries of low-symmetry phases arising under c
tallization and the topology of the phase diagram are co
pletely determined by the symmetry of a protein liquid
the cylindrical surface, which is predetermined by the ani
tropic structure of the protein molecules.

The structures of possible low-symmetry phases are
scribed by the protein density functionr(z,w). The latter
should be expanded in series in terms of basis function
irreducible representations of a symmetry group of the p
tein liquid ~Appendix!.

Since on one hand one can consider crystallization
nonchiral subunits, and on the other hand the influence of
chirality on the crystallization can for some proteins be n
ligible, let us consider first the nonchiral case. In this case
four basis functions of the even irreducible representa
E(1) ~the representations are described in the Appendix! take
the form

c1
~1!5exp$ i ~kz1mw!%, c2

~1!5exp$ i ~kz2mw!%,

c3
~1!5c1

~1!* , c4
~1!5c2

~1!* ~1!

~here the asterisk means complex conjugation!. The basis
functions of the odd representationE(2) can be chosen a
c i

(2)5nzc i
(1) ( i 51,2,3,4) withnz the unit vector projection

in theOz direction. The superscript enumerates the repres
tations~Appendix!, while the subscript running from 1 to
counts the functions within each representation.

The density of proteins along the cylindrical surface c
be expanded in terms of the basis functions of the repre
tationsE(1) andE(2). In the vicinity of the crystallization its
main term takes the form

r~z,w!5r01 (
j ,k51

2

h j
~k!$exp~ iv j

~k!!c j
~k!~z,w!

1exp~2 iv j
~k!!c j

~k!* ~z,w!%, ~2!

where r0 is the constant density in the liquid phase. T
periodicity condition has the formr(z,w)5r(z,w12p),
from which it follows thatm takes integer values. The coe
ficientsh j

(k)exp(6ivj
(k)) by the basis functions in the densi

expansion~2! are the order parameters@5,10#, henceh j
(k) and

v j
(k) are their amplitudes and phases, with amplitudes be

positiveh j
(k)>0. The positions of the protein molecules in a

possible phases correspond to the points of maxima of
density function Eq.~2!.

The free energy is a function of the order paramet
h j

(k)exp(6ivj
(k)), which are supposed to be small and it c

be expanded in a power series@10#. The free energy must b
invariant under the action of the groupG @5,10# thus it must
be the function of some invariant combinations of the co
ponents of the order parametersh j

(k) andv j
(k) . One can find

a minimal set of independent invariants~referred to as the
integer rational basis of invariants@11#!, so that the free en
ergy depends only on this set of invariants. The transform
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tional properties@Eq. ~A1! in the Appendix# determine the
integer rational basis of invariants of the groupG for each
irreducible representationE(1) andE(2). In the both cases the
basis consists of two invariants:

J1
~ j !5~h1

~ j !!21~h2
~ j !!2; J2

~ j !5~h1
~ j !h2

~ j !!2 ~3!

( j 51,2). Each of them completely determines the list
possible low-symmetry phases and the possible structure
the phase diagrams, since the free energy densityf should be
considered as some function that depends only on the inv
ants appearing in the integer rational basis@Eq. ~3!#: f
5 f (J1 ,J2). One can see that the number and the structur
invariants in the casej 51 are the same as those in the ca
j 52. Thus the lists of phases and phase diagrams in th
two cases are the same, while the structures of the phase
different.

Consider first the phases described by the order par
eters transforming according to the representationE(1).
There are four phases on the phase diagram.

(1) The liquid phase. In this phaseh j
( j )50, r5r0 , and

the symmetry group isG.
(2) The helical phase. h1

(1)Þ0; h2
(1)5h1

(2)5h2
(2)50 with

an arbitrary value ofv1
(1) @8#. The main term of the density

function Eq. ~2! in the helical phase in the vicinity of the
phase transition has the formr(z,w)5r012h1

(1) cos(kz
1mw1v1

(1)). Its symmetry group consists of the discrete r
tations C2p/m , discrete translationsT2p/k , and continuous
helical displacements—the transformationsSa,1 with kl
1ma5const ~see the Appendix!. The density function
r(z,w) in this phase is peaked alongm helixes kz1mw
1v1

(1)52pN ~with integer N50,1,...,m21!, the density
function having the same maximum valuermax5r012h1

(1) .
One can see that this helical phase is not a crystalline
and there are no direct analogies to this phase either in so
or among liquid crystalline phases@9#.

(3) The crystalline phase. h1
(1)5h2

(1)Þ0; h1
(2)5h2

(2)50,
the values of v1,2

(1) being arbitrary. Herer(z,w)5r0

14h1
(1) cos$kz1(v1

(1)1v2
(1))/2%cos$mw1(v1

(1)2v2
(1))/2%. The

symmetry operations of this phase are the discrete displ
mentsT2p /k along Oz by the lattice parameter 2p/k, the
discrete rotationsC2p/m aroundOz through the angle 2p/m;
the discrete helical displacementsSp/k,p/m , and a set of the
mirror planessh andsv . The crystalline lattice is given by
the points of intersections of two families of helixes:kz
1mw1v1

(1)52pN1 and kz2mw1v2
(1)52pN2 with

N1 ,N250,1,...,m21 with different senses and the sam
pitch h52p/k.

(4) The crystalline phase. h1
(1)Þh2

(1)Þ0; h1
(2)5h2

(2)50
with arbitrary values ofv1,2

(1) . In this phaser(z,w)5r0

12h1
(1) cos(kz1mw1v1

(1))12h2
(1) cos(kz2mw1v2

(1)). There
are no mirror planes in this phase, while the symmetry
erationsT2p /k , C2p/m , andSp/k,p/m and the lattice are the
same as those in phase~3!.

The structures of the above phases are shown in Fig.
If the crystallization is described by the order parame

transforming according toE(2), one gets the same list con
sisting of four phases with the same symmetry operatio
the liquid phase 1, the helical phase 28 ~h1

(2)Þ0; h2
(2)
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5h1
(1)5h2

(1)50!, and two crystalline phases 38 ~h1
(2)5h2

(2)

Þ0; h1
(1)5h2

(1)50! and 48 ~h1
(2)Þh2

(2)Þ0; h1
(1)5h2

(1)

50!. In contrast, the phases 28, 38, and 48, being polar, have
structures different from those of the phases 2, 3, and 4.
representationE(2) describes the crystallization of the prote
molecule having dipole moments along the axis of the c
inder. In this case the main term of theOz projection of the
polarization vectorPz takes the form

Pz~z,w!}(
j 51

2

h j
~2!$exp~ iv j

~2!!c j
~2!1exp~2 iv j

~2!!c j
~2!* %.

~4!

In the lattices of phases 28–48 the positions of the protein
molecules correspond both to the points of maxima and
those of minima of the polarization Eq.~5!. Thus Eq.~5!
describes two times more positions than in the case of ph
2–4 with the same values ofk andm @Fig. 1~d!#.

The three-dimensional phase diagram in the space of
coefficientsa1 , a2 , andc1 of the free energy Eq.~A2! ~Ap-
pendix! is shown in Fig. 2@12#.

Consider now the crystallization of chiral proteins on t
cylindrical surface~Appendix!. In order to elucidate the
structural difference between the cylindrical phases in
chiral and nonchiral cases consider the chiral free energ

FIG. 1. The structure of some cylindrical phases.~a! The spiral
phase 2. The evolvent of the cylinder~0<w,2p! showing the
structure of the crystalline cylindrical phases 3~b! and 4~c!. The
crosses are used to show schematically the local symmetry.~d! The
structure of the polar phase 38. The extrema of the density functio
are located in the points of the intersections of the two families
spirals shown by the dotted lines.
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its simplest form, which enables us to describe crystallizat
of chiral proteins. To do this it is necessary to take in
account the interaction of two order parametersi 51 and i
52 up to the fourth order inh1

( j ) andh2
( j ) . The invariants of

the chiral groupGch are listed in the Appendix@Eq. ~A3!#.
The free energy takes the form

F5E H (
i 51

2

@gi j I g
~ i j !1l i j I L

~ i j !1a i j I 1
~ i j !1b i j ~ I 1

~ i j !!2#

1g j I 1
~1 j !I 1

~2 j !J dz, ~5!

where j is fixed to be either 1 or 2 and is omitted in th
subsequent text.gi ,b i.0 anda j5a i8(T2Tci). The differ-
ences between the transition temperaturesTc1 andTc2 , and
betweena18 anda28 are supposed to be small since the we
chiral case is considered. The free energy Eq.~5! makes it
possible to describe a local part of the phase diagram in
vicinity of a point where several low-symmetry phases b
der the liquid phase. It describes four phases: the chiral
uid phase 19 ~h15h250; the symmetry groupGch!; two
helical phases 29 ~h1Þ0; v15v101q1z; h250!, and 39
~h2Þ0; v25v201q2z; h150! and the crystalline phase 49
~h1Þ0; v15v101q1z; h2Þ0; v25v201q2z!. The free
energy Eq.~5! is minimized by choosingqi52l i /2gi .

f

FIG. 2. The phase diagram of the crystallization on the cylin
described by the potential Eq.~4!. ~a! the plane (a2 ,b1). The
second-order transition from the liquid phase takes place on the
of this plane limited by the line of the tricritical points~b!. Behind
this line the first order crystallization takes place on the surface~c!.
The stability region of the liquid phase is over these surfaces.
spiral phase 2 is located under the plane~a! and the surface~c! to
the right of the surfaces~d!, ~e!, and~f!; the region of stability of the
crystalline phase 3 is to the left of the surface~f!. The phase 4 is
between the surfaces~f! and ~d!, ~e!. The transition between the
spiral phase 2 and the crystalline phase 4 takes place by way o
second order on the surface~d! and by way of the first order on the
surface~e! separated from one another by the line of the tricritic
points ~g!. The second-order transition between the crystall
phases 3 and 4 takes place on the surface~f! and the first-order
transition takes place on its extension~which is not shown in the
picture!. The spiral phase 2 transforms into the crystalline phas
by way of the first-order transition along the segment of the pla
~h! limited by the line~i! of triple points in which three phases 2, 3
and 4 are bordering.
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3398 56A. A. BOULBITCH
In the chiral helical phases 29 and 39 the density takes
the form r(z,w)5r012h icos$(k2li/2gi)z1(21)i 11mw
1v i0% with the equilibrium values of the order paramete
h i

252(a i2l i /4gi)/2b i . One can see that the chiral helic
phases have the same structures as those of the phase 2
casej 51 or the phase 28 in the casej 52, the sense of the
helix being fixed@8#.

In the chiral crystalline phase 49 the density takes
the form r(z,w)5r012h1cos$(k2l1/2g1)z1mw1v10%
12h2cos$(k2l2/2g2)z2mw1v20% with the values of
the order parametersh1

25$g(a22l2
2/4g2)22b2(a12l1

2/
4g1)%/D and h2

25$g(a12l1
2/4g1)22b1(a22l2

2/4g2)%/D,
where D54b1b22g2. One can see that the protein pos
tions in this phase are also located in the points of inters
tions of the two families of helixes of different senses:k
2l1/2g1)z1mw1v1052pN1 and (k2l2/2g2)z2mw
1v2052pN2 . However, in contrast to phase 4 these helix
have different pitch valuesh152p/(k2l1/2g1); h2
52p/(k2l2/2g2); h1Þh2. Note that phase 49 corresponds
to phase 4 in the nonchiral case since due to the chira
there are no mirror planes in it.

One of the possible phase diagrams containing the c
talline phase is shown in Fig. 3. The phase diagrams Fig
and 3 are displayed on the planes of the coefficients of
free energy and show the regions of stability of phases in
space of the phenomenological constants. However, th
constants depend on thermodynamic parameters and h
the calculated diagrams~Figs. 2 and 3! are locally isomor-
phous to those in the thermodynamic coordinates~tempera-
ture, pressure, concentration, and so on!. Note that in con-
trast to classical 3D crystallization and 2D crystallization
a plane@5,6# there is no cubic invariant in the integer ration
basis neither in the nonchiral nor in the chiral case. T
enables the crystallization to be the second order phase
sition and justifies the weak crystallization approach.

The considered system has two types of fluctuations:

FIG. 3. One of the possible phase diagrams of the weak cry
lization of chiral proteins on the cylinder in the caseD.0; g,0. All
phase transitions are of the second order. The four phases bord
the multiphase point with the coordinatesa1m5l1

2/4g1 , a2m

5l2
2/4g2 .
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order parameter fluctuations and the bending fluctuation
the cylinder. The latter kind of fluctuation depends on t
cylinder rigidity and, in general, on its nature. The form
one has some specific properties related to its geome
Fluctuations are not considered in this contribution.

There is a set of 2D lattices that can be deformed i
self-contained cylindrical lattices without defects. These l
tices are enumerated in Ref.@3#. One should distinguish two
cases. If the crystallization takes place on a hypothetical r
cylindrical surface that cannot change its shape one sh
expect the formation of one of the self-contained cylindric
lattices@3# even in the case of aggregation of spherical m
ecules. However, when free of this constraint, these m
ecules must form a usual 3D lattice. In contrast, the free
constraint ‘‘trapezoidal’’ molecules discussed in this pap
inevitably aggregate to form a cylindrical surface. The list
possible crystalline structures is determined in this case
the symmetry of the cylindrical liquid, which is predete
mined by the molecular shape.

APPENDIX

The space groupG of the nonchiral liquid phase on a
infinite cylinder is the direct product of its point groupD`h
and the group of continuous translationsT along the cylinder
axis ~the Oz axis!: G5D`h^ T. Here D`h5C`v ^ Ci ,
whereCi is the inversion group while the groupC`v consists
of a rotation axis of an infinite order alongOz and the mirror
planes passing through this axis. In International notat
D`h5`/mm; Ci51̄; C`v5`m; D`5`2.

The globular proteins of the tobacco mosaic virus a
tubulin in the microtubules have partiallya-spiral and par-
tially b structures@1#. If the proteins have in their secondar
structurea-spiral portions the protein globule manifests t
chiral properties. In this case the chiral symmetry groupGch
of the protein liquid does not contain the mirror plane
Gch5D` ^ T.

The irreducible representations of the groupG are con-
structed as the direct products of the irreducible represe
tions of the groupsD`h and T. There are two irreducible
representations of the groupCi : identical~even! Ag and odd
Au . The groupC`v has the identical representationA1 , the
one-dimensional representationA2 , and the set of two-
dimensional representationsEm . The latter have the basi
functions exp(6imw), wherem is the discrete number. Th
translation groupT has the one-parametric family of repre
sentationstk with exp(6ikz) as the basis functions wherek is
the wave-vector projection onto theOz axis taking continu-
ous values and identical representationt0 . All possible irre-
ducible representations of the groupG can be obtained as
terms in the expression (Ag% Au) ^ (A1% A2% Em) ^ (t0
% tk), containing the direct products of the direct sums of t
above representations. Different crystalline orders on the
lindrical surface can be described either by one of these
reducible representations or by some kind of combination
them.

Here we consider only the case of crystallization d
scribed by the four-component representations generate
the two-dimensional representationsEm , tk , and eitherAg or
Au . The four basis functionsc i

(1) ( i 51,2,3,4) of the even
representationE(1)5Ag^ Em^ tk have the simple form Eq
~1!. The basis functions of the odd representationE(2)5Au

^ Em^ tk differ from those of theE(1) since they change

l-

r in
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56 3399CRYSTALLIZATION OF PROTEINS ACCOMPANIED BY . . .
their signs under inversion and can be chosen asc i
(2)

5nzc i
(1) ( i 51,2,3,4), wheren is the unit vector.

The generators of the groupG are the horizontal mirror
plane sh , one of the vertical mirror planessv ~one may
choose the plane passing through theOx andOz axis!, and
the chiral displacementSa,l5CaTl , which consists of the
rotation Ca through the arbitrary anglea around and the
displacementTl by l along theOz axis. Under the action o
the generators the order parameters have the following tr
formation properties:

svh1,2
~ j !5h2,1

~ j ! , shh1,2
~ j !5~21! j 11h2,1

~ j ! , Sa,lh i
~ j !5h i

~ j ! ,
~A1!

shv1,2
~ j !52v2,1

~ j ! , svv1,2
~ j !5v2,1

~ j ! ,

Sa,lv i
~ j !5v i

~ j !1kl1~21! i 11ma.

Transformations~A1! make it possible to determine the in
teger rational basis of invariants constructed with the co
ponents of the order parameters Eq.~3!. The latter contains
the complete information about the low-symmetry pha
and the phase diagram.

In order to obtain the phase diagram of the crystallizat
one should expand the free energyf 5 f (J1 ,J2) in a series in
terms of the invariantsJ1 and J2 . When some individual
transitions are considered, depending on the order of
transition one can limit the expansion with the terms of
ther the fourth or the sixth degree in order parameter. Ho
ever, in order to describe the whole phase diagram cont
ing all the phases that are allowed by symmetry one sho
consider the expansion up toJ1

5;h10, the tenth-order term
being isotropic:

f 5a1J11a2J1
21a3J1

31a4J1
41a5J1

51c1J21c2J2
21b1J1J2

1b2J1
2J2 , ~A2!

whereai , bi , andci are the phenomenological coefficient
r,

ter

.

D
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,
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-

s
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a5.0. The phase diagram~Fig. 2! can be obtained by the
ordinary analysis~one can find the description of the met
ods of this analysis in Refs.@10# and @11#!.

The generators of the groupGch are the chiral displace
mentSa,l and the twofold axisC2 along theOx axis. In the
group G the representationsE(1) and E(2) are reducible in
the groupGch. Each of them splits into two equivalent irre
ducible representationsEi

(1) andEi
(2) ( i 51,2) with the basis

functions (c1
( j ) ,c3

( j )) for i 51 and (c2
( j ) ,c4

( j )) for i 52. The
indices i , j 51,2 enumerate now four irreducible represen
tions Ei

( j ) and four corresponding order parameters am
tudesh i

( j ).0 and phasesv i
( j ) . Each of them gives rise to its

own integer rational basis of invariants. Each basis cons
of only one invariantI 1

( i j ) . In the chiral case the mirro
planes and the inversion are absent. Therefore the Lifs
invariant I L

( i j ) ~linear in ]/]z! can be constructed@10#. This
means that the order parameters arez dependent in this case
They are described as the solutions of a differential equat
which should be obtained as the minimum condition of t
free energy. The latter depends on the invariantI 1

( i j ) , on the
Lifshitz invariantI L

( i j ) , and for the sake of global stability o
the free energy@10# one must take into account the gradie
invariantI g

( i j ) ~square in]/]z!. The invariants have the form

I 1
~ i j !5~h i

j !2, I L
~ i j !5~h i

j !2]v i
j /]z,

I g
~ i j !5~]h i

j /]z!21~h i
j !2~]v i

j /]z!2. ~A3!

If the transition describing by two order parameters is st
ied ~they can be fixed by, say,j 51, i 51, andi 52! the free
energy density is constructed of the invariants~A3! built of
both order parameters Eq.~5!.
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order everywhere except in an isolated Curie point~if the latter
exists!. However, fluctuations turn the isolated Curie point to
segment of a transition of a slightly first order~Ref. @5#!.

@7# One should also take into account a possibility of conform
tional changes of proteins that can occur under crystalliza
and decrease the elastic energy cost.

@8# In the nonchiral case the statesh1
(1)Þ0; h2

(1)5h1
(2)5h2

(2)50
and h1

(1)50; h2
(1)Þ0; h1

(2)5h2
(2)50 describe different do-

mains of the same spiral phase and have the same symm
and energy. In contrast, in the chiral case the structures of
same states differ from one another by the values of the sp
pitches hi52p/(k2l i /2gi) and hence by the translationa
symmetry. Thus in the chiral case they describe differ
phases. The difference in their energies arises due to the
shits invariant.
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smectic-C* liquid crystal on a cylindrical surface. The differ
ence is that smectic liquid crystals have a long-range orie
tional in-layer order in addition to the long-range translation
order in the direction normal to the layers. In contrast t
helical phase has no long-range orientational order within
helix.
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