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Crystallization of proteins accompanied by formation of a cylindrical surface
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A possibility of the formation a self-contained cylindrical lattice under crystallization of proteins due to the
anisotropic(trapezoidal shape of their globules is discussed theoretically. The theory of cylindrical crystalli-
zation is considered. It is shown that in this case the list of the low-symmetry phases is completely determined
by the symmetry of the cylindrical liquid, which is predetermined by the molecular shape. The phase symme-
tries and structures are found out. The phase diagrams are obtgd€63-651X97)08208-1

PACS numbe(s): 87.10:+e, 64.70.Dv, 87.22.Bt, 46.30i

In biological objects there is a set of examples of unusuathe rigid restriction that either it takes place in close vicinity
structures arising under crystallization of certain proteinsto the isolated Curie point of the phase diagram or the cubic
Rather than crystallize into a bulk three-dimensiof&D) term is small for some reasd®]. It is shown in this paper
lattice, as usually occurs for all nonorganic and for mostthat this limitation is absent under crystallization with the
organic materials, these proteins form a self-contained cylinformation of the cylindrical surface.
drical surface. Consider first a simple example of an aggregation of mol-

The most important example is microtubule formation un-ecules whose shape in one of the three mutually perpendicu-
der crystallization of the protein tubulin. This protein forms lar cross sections is trapezoidal and in the other two it is
microtubules—Ilong cylinders about 25 nm in outer diameterectangular. Assume that under the aggregation the nearest
and 14-15 nm in inner diameter. They are constructed ofmolecules are oriented in the same way. These molecules
tubulin dimers and have crystalline organization. Tubulinform obviously an archlike surface with its radius fixed by
dimers align head to tail in 13 longitudinal parallel protofila- the size of the trapezoid. On the one hand, in order to form a
ments, lining the wall of the microtubule. Each tubulin sub-closed single-layer cylindrical surface the size of the mol-
unit is a polar dimer consisting of two slightly different tu- ecules must be subject to certain geometrical conditions.
bulin « and 8 monomers, its polar character originating from However, if the molecules are elastic they can still form a
calcium ions bounded withi monomerq1,2]. cylindrical surface at any size of the trapezoid. On the other

The proteins of the tobacco mosaic virus aggregate into Aand, formation of a multilayer cylindrical surface requires
cylinder with an inner radius of about 200 nm and an outeithat some additional conditions on the subunits size be ful-
one of about 800 nm and with a length of more than 30 00Gilled, the elastic energy cost increasing with the number of
nm with the RNA molecule lying along the helix. There is a layers under elastic adaptation. Hence the formation of a
region on the phase diagram in which the protein subunitsnonolayer cylinder should be energetically favorable in
are arranged in a helixL]. some cases.

Under crystallization of proteins of biological membranes One can expect the globules of some proteins to have
formation of crystal patches is usually observed. Being moranisotropic shapes qualitatively corresponding to that dis-
rigid, the protein crystal area is as a rule flattened with recussed abov§7]. The condition of the same orientation of
spect to the protein-free membrane region. However, in cerproteins under aggregation can be realized for various
tain cases crystallization of proteins on initially sphericalreasons—because of either the orientational peculiarities of
vesicles was followed by the transformation of vesicle shapeheir interaction potentials or some geometric restrictions.
into cylindrical shape, the vesicle surface being covered by ahe latter occurs, for example, under crystallization of pro-
self-contained crystalline protein latti¢8]. teins anchored onto one of the membrane sj@gs

In biological systems one can find already existing objects When the anisotropy of protein globules is of the type
with cylindrically arranged proteins. In cylindrical giant cells discussed above one should expect a cylindrical surface to be
of green water plant€hara and Nitella the actin filaments formed under protein crystallization. The free energy de-
form a helical winding under the cell membrane, providing ascribing this kind of crystallization involves the terms related
helical stream of the cytoplasid]. to the protein conformational changes, elastic deformation

The above examples stimulate interest in elucidating thend, in the case of membrane proteins, to the membrane
reasons that proteins crystallize into a lattice, forming ashape change in addition to terms describing the crystalliza-
closed cylindrical surface. tion itself. The latter ones contain information about equilib-

Crystallization of organic molecules and especially ofrium structures of possible phases and topology of the phase
proteins is often determined by gently sloping potentialsdiagram.
which enables us to apply in this case the theory of weak It is the equilibrium phase structures and topology of the
crystallization5]. Crystallization should be considered weak phase diagram that are studied in the present communication.
if the transition from a liquid to a crystal is of the first order, Suppose that the cylindrical surface of a necessary radius
but is rather close to the second order. In the case of 3[R@ontaining proteins in the liquid phase already exisis.,
crystallization and 2D crystallization on a plane this imposeshere is already a cylindrical vesicle with integrated or an-
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chored proteins in a liquid phasdn this case the crystalli- tional propertiedEqg. (Al) in the Appendi¥ determine the
zation of the protein liquid on this cylindrical surface will integer rational basis of invariants of the groGpfor each
take place in its pure form without any consumption of en-irreducible representatidg® andE(®). In the both cases the
ergy for conformational or elastic changes. The structurepasis consists of two invariants:
and symmetries of low-symmetry phases arising under crys-
tallization and _the topology of the phase diagra_m are com- J(li>:(,7<lj>)2+(,7<2j>)2; J(21>:(,7(1j)77<2j))2 3
pletely determined by the symmetry of a protein liquid on
the cylindrical surface, which is predetermined by the aniso
tropic structure of the protein molecules.

The structures of possible low-symmetry phases are d
scribed by the pmte'T‘ den_S|ty.funct|qﬂz,<p). The Iat;er onsidered as some function that depends only on the invari-
should be expanded in series in terms of basis functions g

) . . nts appearing in the integer rational bagky. (3)]: f
irreducible representations of a symmetry group of the pro—:f(J [i)]p) On?a. can see thatgthe number ancﬁe (st)r]ucture of
tein liquid (Appendix. 12

. . L invariants in the casg=1 are the same as those in the case
Since on one hand one can consider crystallization o

X ) . =2. Thus the lists of phases and phase diagrams in these
no.nchlral subunits, anq on the other hand the mflyence of th WO cases are the same, while the structures of the phases are
chirality on the crystallization can for some proteins be neg-

different.

ligible, Ielt us con.3|derf|rst the nonthral case. In this case Fhe Consider first the phases described by the order param-
four basis functions of the even irreducible representation

i i )
EX (the representations are described in the Appertdie eters transforming according to the representatigf.

(i=1,2). Each of them completely determines the list of
ossible low-symmetry phases and the possible structures of
he phase diagrams, since the free energy dehsihould be

There are four phases on the phase diagram.

the form (1) The liquid phaseln this phase;yf”=0, p=po, and
D —expli(kz+me)}, Y =expli(kz—me)}, the symmetry group i&.
' 3 hoode A } (2) The helical phasep{+0; 75" = 7%= 52)=0 with
PO = g0 gD (1) an arbitrary value ofo{V) [8]. The main term of the density
3~ ’ 4 — Y2

function Eq.(2) in the helical phase in the vicinity of the

(here the asterisk means complex conjugatiofhe basis Phase transition has the form(z,¢)=po+27{" coskz
functions of the odd representatid® can be chosen as +m<P+w(11))- Its symmetry group consists of the discrete ro-
¢§2)=n2¢q(1) (i=1,2,3,4) withn, the unit vector projection tations Cz_w,m, discrete translation3, ., _and continuous
in the Oz direction. The superscript enumerates the represerfi€lical displacements—the transformatio,, with Kl
tations (Appendi®, while the subscript running from 1 to 4 +Ma=const (see the Appendjx The density function
counts the functions within each representation. p(z,¢) in this phase is peaked along helixes kz+me

The density of proteins along the cylindrical surface can+ ®{"=27N (with integer N=0,1,..m—1), the density
be expanded in terms of the basis functions of the represeffiunction having the same maximum valpg,,=po+27.
tationsE™™) andE(?. In the vicinity of the crystallization its One can see that this helical phase is not a crystalline one
main term takes the form and there are no direct analogies to this phase either in solids

or among liquid crystalline phaséS].

2 (3) The crystalline phasep{=7{Y+#0; 7{?= 5P =0,

_ (k) LKy (K
p(Z,qD)—PoJFJ,’kE:l 7y {exp(i o) (2, ) the values of w{Y) being arbitrary. Herep(z,¢)=po
. + 470 cogkzt+ (0D + w2} cogme+ (0P — wiP)/2}. The
+exp—io) g (z,0)}, (2)  symmetry operations of this phase are the discrete displace-

mentsT, ., along Oz by the lattice parameter 2k, the

where pg is the constant density in the liquid phase. Thediscrete rotation€, ., aroundOz through the angle 2/m;
periodicity condition has the fornp(z,¢)=p(z,¢+2), the discrete helical displacemer8g ,m, and a set of the
from which it follows thatm takes integer values. The coef- mirror planeso;, ando, . The crystalline lattice is given by
ficients 7{exp(xia{’) by the basis functions in the density the points of intersections of two families of helixelsz
expansior(2) are the order parametdrs, 10|, hencenj(k) and +me+eM=27N; and kz-me+wiP=27N, with
wj(k) are their amplitudes and phases, with amplitudes beinf1,N>=0,1,..m—1 with different senses and the same
positive 7{=0. The positions of the protein molecules in all pitth h=2a/k. . ) , ,
possible phases correspond to the points of maxima of the (4) The crystalline phasen{"# 759+ 0; 7%= 7?=0
density function Eq(2). with arbitrary values ofw(fz). In this phasep(z,¢)=pg

The free energy is a function of the order parameters+27{" coskz+me+w{?)+27 coskz—me+wl). There
7Mexp(*ie), which are supposed to be small and it canare no mirror planes in this phase, while the symmetry op-
be expanded in a power serig€)]. The free energy must be erationsT,, x, Comm, @andS_ m and the lattice are the
invariant under the action of the gro@[5,10] thus it must same as those in phaé®.
be the function of some invariant combinations of the com- The structures of the above phases are shown in Fig. 1.
ponents of the order parameteys’ andw (. One can find If the crystallization is described by the order parameter
a minimal set of independent invariani®ferred to as the transforming according t&®), one gets the same list con-
integer rational basis of invarianf41]), so that the free en- sisting of four phases with the same symmetry operations:
ergy depends only on this set of invariants. The transformathe liquid phase 1, the helical phasé 27{*+#0; 7{?
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FIG. 2. The phase diagram of the crystallization on the cylinder
described by the potential Eq4). (a) the plane &,,b;). The

N
N

-
-

Y&‘H?#*# | second-order transition from the liquid phase takes place on the part
\}/,?\}/t ‘I;y#' of this plane limited by the line of the tricritical points). Behind
I:I:Iﬁ’ l\‘f'/ J"\ this line the first order crystallization takes place on the surfaexe
\:1‘:’*\?*:,‘,\*‘:*\3":‘\:{/1 The stability region of the liquid phase is over these surfaces. The
LK 4,/:11\;,{\{1(\@1 spiral phase 2 is located under the pldaeand the surfacéc) to
KIRX I ALK the right of the surface@l), (e), and(f); the region of stability of the
‘\*,3\*,‘]?\*,*\*,*\",/1 crystalline phase 3 is to the left of the surfage The phase 4 is
I#I 1I#I#I between the surface$) and (d), (). The transition between the
1¢?4}¢\1‘\L1‘ ‘ spiral phase 2 and the crystalline phase 4 takes place by way of the

¢ second order on the surfagd and by way of the first order on the
surface(e) separated from one another by the line of the tricritical
points (g). The second-order transition between the crystalline
FIG. 1. The structure of some cylindrical phas@s.The spiral ~ Phases 3 and 4 takes place on the surfdgend the first-order
phase 2. The evolvent of the cylindéd<e<2m) showing the transition takes place on its extensigmhich is not shown in the
structure of the crystalline cylindrical phasest8 and 4(c). The  picture. The spiral phase 2 transforms into the crystalline phase 3
crosses are used to show schematically the local symmidjrghe by way of the first-order transition along the segment of the plane
structure of the polar phasé.3rhe extrema of the density function (h) limited by the line(i) of triple points in which three phases 2, 3,
are located in the points of the intersections of the two families ofand 4 are bordering.
spirals shown by the dotted lines.

d)

its simplest form, which enables us to describe crystallization
=7V=7Y=0), and two crystalline phases 37{?)= 72 of chiral proFeins. T_o do this it is necessary to take_ into
#0; 7\V=5P=0) and 4 (5P #7P=0; »P=5L account the interaction of_ two order parametersl andi
=0). In contrast, the phase$, ', and 4, being polar, have =2 up to the fourth order |n7(1‘) and 77(2’). The invariants of
structures different from those of the phases 2, 3, and 4. Thi&€e chiral groupGg, are listed in the AppendikEqg. (A3)].
representatio® describes the crystallization of the protein The free energy takes the form
molecule having dipole moments along the axis of the cyl-
inder. In this case the main term of tkkz projection of the F:f ‘
polarization vectoP, takes the form

2
iZI Lol + N1+ a1 1+ B (197)7]

2
. . * (2 (2))
Pz, @)= 2, n{explio”)yy” +exn—iaf”)y”"). Tyl }dz’ ®)

@ wherej is fixed to be either 1 or 2 and is omitted in the

In the lattices of phases'24’ the positions of the protein Subsequent text;,3;>0 anda;=a{(T—T;). The differ-
molecules correspond both to the points of maxima and t@nces between the transition temperatirgsand T,, and
those of minima of the polarization E@5). Thus Eq.(5)  betweena; anda, are supposed to be small since the weak
describes two times more positions than in the case of phasebiral case is considered. The free energy €.makes it
2—-4 with the same values &fandm [Fig. 1(d)]. possible to describe a local part of the phase diagram in the

The three-dimensional phase diagram in the space of theécinity of a point where several low-symmetry phases bor-
coefficientsa, , a,, andc; of the free energy EqA2) (Ap-  der the liquid phase. It describes four phases: the chiral lig-
pendix is shown in Fig. 212]. uid phase 1 (,=7,=0; the symmetry grouf5.); two

Consider now the crystallization of chiral proteins on thehelical phases 2(7,#0; w1=wiotd.1Z; 7,=0), and 3
cylindrical surface(AppendiX. In order to elucidate the (7,#0; w,=wyot+022z; 7,=0) and the crystalline phasé 4
structural difference between the cylindrical phases in thé7,#0; w;=wgtq12Z; 7,#70; wr,=wygtq,z). The free
chiral and nonchiral cases consider the chiral free energy ienergy Eq.(5) is minimized by choosing};= —\;/2g; .
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order parameter fluctuations and the bending fluctuations of
o, the cylinder. The latter kind of fluctuation depends on the
y , cylinder rigidity and, in general, on its nature. The former
! one has some specific properties related to its geometry.
: Fluctuations are not considered in this contribution.
l There is a set of 2D lattices that can be deformed into
. phase 17 self-contained cylindrical lattices without defects. These lat-
! tices are enumerated in R¢8]. One should distinguish two
! cases. If the crystallization takes place on a hypothetical rigid
PR cylindrical surface that cannot change its shape one should
) expect the formation of one of the self-contained cylindrical
phase 4” Y lattices[3] even in the case of aggregation of spherical mol-
. ecules. However, when free of this constraint, these mol-
ecules must form a usual 3D lattice. In contrast, the free-of-
\ constraint “trapezoidal” molecules discussed in this paper
Y inevitably aggregate to form a cylindrical surface. The list of
. phase 2” possible crystalline structures is determined in this case by
' the symmetry of the cylindrical liquid, which is predeter-
mined by the molecular shape.

FIG. 3. One of the possible phase diagrams of the weak crystal- APPENDIX
lization of chiral proteins on the cylinder in the case0; y<0. All

y . The space grou® of the nonchiral liquid phase on an
hase transitions are of the second order. The four phases border.in. . - . . . .
Fhe multiphase point with the coordinateslmzxilagl o ifinite cylinder is the direct product of its point grolip..;,

N and the group of continuous translatiohalong the cylinder

— MG axis (the Oz axis): G=D,,®T. Here D,,=C,,®C;,

. . , : whereC; is the inversion group while the growp,, consists

h Infthe chiral he_llcal ghases’ kzmd/g the denls|it¥1takes of a rotation axis of an infinite order alorigz and the mirror
the Ormhp(hz*@)_ﬁpb“L_ mcosl{( _7‘if %\i)ﬁé_ ) ""Me  lanes passing through this axis. In International notation
+ wjo} with the equilibrium values of the order parametersth:w/mm; Ci=1; C,,=oom; D, =2.

7:=—(a;—\i/4g))/2B; . One can see that the chiral helical  “The globular proteins of the tobacco mosaic virus and
phases have the same structures as those of the phase 2 in{fi§ylin in the microtubules have partially-spiral and par-
casej =1 or the phase 2in the casg =2, the sense of the tjally g structureq1]. If the proteins have in their secondary
helix being fixed[8]. structurea-spiral portions the protein globule manifests the

In the chiral crystalline phase”4the density takes chiral properties. In this case the chiral symmetry gréug
the form p(z,¢)=pg+275,c04(k—N\1/29,)Z+ Mo+ wqg} of the protein liquid does not contain the mirror planes:
+27,c04(k—N\x/295)Z—me+ wogp  with the values of Gg=D.®T.
the order parameters)?={y(a,—\3/49;) —2B,(a;—\3/ The irreducible representations of the gro@pare con-
4g,)MA and 75={y(ay—\3/4g;) — 2B1(ay— N5/4g,)}/ A, structed as the direct products of the irreducible representa-
where A=4p,8,— y. One can see that the protein posi- tions of the group.., and T. There are two irreducible
tions in this phase are also located in the points of intersedePresentations of the grod:  identical(ever A4 and odd
tions of the two families of helixes of different sensek: ( Au- The groupC.,, has the identical representatidy, the
—N1/29))Z+ Me+ wyo=27N;  and  K—\,/2g,)z—me one-dmensmnal represgntatlohz, and the set of twoj
+w,0=2mN,. However, in contrast to phase 4 these helixelimensional representatiorts,,. The latter have the basis
have different pitch valuesh,=2m/(k—\4/2g;); h functlons exptimg), wherem is the dlscr-ete ngmber. The
=2m/(k—\,/2g,): hy#h,. Note that phase”4corresponds transla_lt|on grqupT has' the one—parametrlc f§m|ly of repre-
to phase 4 in the nonchiral case since due to the chiralitpentationsi with exp(ikz) as the basis functions whekes
there are no mirror planes in it. he wave-vector projection onto th@z axis taklng. con'tlnu—

One of the possible phase diagrams containing the Cryégus_values and |dent|cal representatign All posmblg irre-
talline phase is shown in Fig. 3. The phase diagrams Figs. gucible representations of the gro@ can be obtained as
and 3 are displayed on the planes of the coefficients of thé&rms in the expression AGeA,)® (A1® A& Er) @ (1o
free energy and show the regions of stability of phases in théti), containing the direct products of the direct sums of the
space of the phenomenological constants. However, thesPOve representations. Different crystalline orders on the cy-
constants depend on thermodynamic parameters and hengdrical surface can be described either by one of these ir-
the calculated diagram@&igs. 2 and B are locally isomor-  Feducible representations or by some kind of combination of
phous to those in the thermodynamic coordinatempera- ~ them. _ o
ture, pressure, concentration, and s9. dwote that in con- Here we consider only the case of crystallization de-
trast to classical 3D crystallization and 2D crystallization onScribed by the four-component representations generated by
a pland5,6] there is no cubic invariant in the integer rational the two-dimensional representatidg, t, and either, or
basis neither in the nonchiral nor in the chiral case. ThisA. The four basis functiong{" (i=1,2,3,4) of the even
enables the crystallization to be the second order phase trarepresentatiorE(l)=Ag® En®ty have the simple form Eq.
sition and justifies the weak crystallization approach. (1). The basis functions of the odd representafid?=A,

The considered system has two types of fluctuations: the E,,®t, differ from those of theE(®) since they change
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their signs under inversion and can be chosen%®
=n,yM (i=1,2,3,4), whera is the unit vector.

The generators of the group are the horizontal mirror
plane o,, one of the vertical mirror planes, (one may
choose the plane passing through g and Oz axis), and
the chiral displacemer®, ,=C,T,, which consists of the
rotation C, through the arbitrary angle around and the
displacement; by | along theOz axis. Under the action of
the generators the order parameters have the following tran
formation properties:

(i

gy 771,)2: g

o (i
72.1» iJ)'

(A1)

onnf = (=119, Sunl=79

j) — j)
onoily=—wd),

-

S0V =0V +kl+(—1)"ma.
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as>0. The phase diagrartFig. 2) can be obtained by the
ordinary analysigone can find the description of the meth-
ods of this analysis in Ref$10] and[11]).

The generators of the grou@., are the chiral displace-
mentS, | and the twofold axi<C, along theOx axis. In the
group G the representation8® and E(® are reducible in
the groupG,,. Each of them splits into two equivalent irre-
ducible representatiors™) andE{? (i=1,2) with the basis
gunctions @4, 4Y)) fori=1 and @Y ,4Y) for i=2. The
indicesi,j=1,2 enumerate now four irreducible representa-
tions Ei(') and four corresponding order parameters ampli-
tudess>0 and phases . Each of them gives rise to its
own integer rational basis of invariants. Each basis consists
of only one invariant!{?). In the chiral case the mirror
planes and the inversion are absent. Therefore the Lifshitz
invariant! (") (linear in 9/9z) can be constructedl0]. This
means that the order parameters adependent in this case.

TransformationgA1) make it possible to determine the in- They are described as the solutions of a differential equation,
teger rational basis of invariants constructed with the comwhich should be obtained as the minimum condition of the
ponents of the order parameters E8). The latter contains free energy. The latter depends on the invarlé}'h)t, on the

the complete information about the low-symmetry phases ifshitz invariant! (!, and for the sake of global stability of
and the phase diagram. the free energy10] one must take into account the gradient

In order to obtain the phase diagram of the crystallizationnyariant! {) (square ing/9z). The invariants have the form
one should expand the free eneffgy f(J,,J,) in a series in

terms of the invariantsd; and J,. When some individual
transitions are considered, depending on the order of the
transition one can limit the expansion with the terms of ei-
ther the fourth or the sixth degree in order parameter. How-
ever, in order to describe the whole phase diagram contain-
ing all the phases that are allowed by symmetry one should

1=(a)2, 1{=(n)?0wlloz,

13" =(a9l192)*+ ()2 (dwll 92)°. (A3)

consider the expansion up tﬁ~ 7' the tenth-order term
being isotropic:
f = a1J1+ az\]i‘i‘ a3J§+ a4\]11+ asJ?‘i‘ ClJ2+ CzJ%"’ b1J1J2
+b,353;, (A2)

wherea;, b;, andc; are the phenomenological coefficients,

If the transition describing by two order parameters is stud-
ied (they can be fixed by, say=1, i=1, andi=2) the free
energy density is constructed of the invariata8) built of
both order parameters E(b).
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